Geometric Requirements for Tectorial Membrane Traveling Waves in the Presence of Cochlear Loads.
نویسندگان
چکیده
Recent studies suggest that wave motions of the tectorial membrane (TM) play a critical role in determining the frequency selectivity of hearing. However, frequency tuning is also thought to be limited by viscous loss in subtectorial fluid. Here, we analyze effects of this loss and other cochlear loads on TM traveling waves. Using a viscoelastic model, we demonstrate that hair bundle stiffness has little effect on TM traveling waves calculated with physiological parameters, that the limbal attachment can cause small (<20%) increases in TM wavelength, and that viscous loss in the subtectorial fluid can cause small (<20%) decreases in TM wave decay constants. However, effects of viscous loss in the subtectorial fluid are significantly increased if TM thickness is decreased. In contrast, increasing TM thickness above its physiological range has little effect on the wave, suggesting that the TM is just thick enough to maximize the spatial extent of the TM traveling wave.
منابع مشابه
Noninvasive in vivo imaging reveals differences between tectorial membrane and basilar membrane traveling waves in the mouse cochlea.
Sound is encoded within the auditory portion of the inner ear, the cochlea, after propagating down its length as a traveling wave. For over half a century, vibratory measurements to study cochlear traveling waves have been made using invasive approaches such as laser Doppler vibrometry. Although these studies have provided critical information regarding the nonlinear processes within the living...
متن کاملLongitudinally propagating traveling waves of the mammalian tectorial membrane.
Sound-evoked vibrations transmitted into the mammalian cochlea produce traveling waves that provide the mechanical tuning necessary for spectral decomposition of sound. These traveling waves of motion that have been observed to propagate longitudinally along the basilar membrane (BM) ultimately stimulate the mechano-sensory receptors. The tectorial membrane (TM) plays a key role in this process...
متن کاملPorosity controls spread of excitation in tectorial membrane traveling waves.
Cochlear frequency selectivity plays a key role in our ability to understand speech, and is widely believed to be associated with cochlear amplification. However, genetic studies targeting the tectorial membrane (TM) have demonstrated both sharper and broader tuning with no obvious changes in hair bundle or somatic motility mechanisms. For example, cochlear tuning of Tectb(-/-) mice is signific...
متن کاملHelmholtz ’ s piano strings : reverberation of ripples on the tectorial membrane
In 1857 Helmholtz proposed that the ear contained an array of sympathetic resonators, like piano strings, which served to give the ear its fine frequency discrimination. Since the discovery that most healthy human ears emit faint, pure tones (spontaneous otoacoustic emissions), it has been possible to view these narrowband signals as the continuous ringing of the resonant elements. But what are...
متن کاملCochlear Mechanics Distributed Impedance Model of Tectorial Membrane Traveling Waves
The mammalian cochlea is a remarkable sensor that can detect motions smaller than the diameter of a hydrogen atom and can perform high-quality spectral analysis to discriminate as many as 30 frequencies in the interval of a single semitone (Kossl and Russell, 1995; Dallos, 1996). These extraordinary properties of the hearing organ depend on traveling waves of motion that propagate along the bas...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Biophysical journal
دوره 112 6 شماره
صفحات -
تاریخ انتشار 2017